首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18367篇
  免费   2811篇
  国内免费   3870篇
测绘学   658篇
大气科学   2605篇
地球物理   2697篇
地质学   7986篇
海洋学   1734篇
天文学   6521篇
综合类   826篇
自然地理   2021篇
  2024年   54篇
  2023年   223篇
  2022年   575篇
  2021年   585篇
  2020年   606篇
  2019年   697篇
  2018年   614篇
  2017年   560篇
  2016年   615篇
  2015年   711篇
  2014年   968篇
  2013年   1089篇
  2012年   1113篇
  2011年   1219篇
  2010年   1239篇
  2009年   1640篇
  2008年   1542篇
  2007年   1541篇
  2006年   1431篇
  2005年   1241篇
  2004年   1100篇
  2003年   944篇
  2002年   772篇
  2001年   708篇
  2000年   589篇
  1999年   570篇
  1998年   464篇
  1997年   260篇
  1996年   216篇
  1995年   197篇
  1994年   191篇
  1993年   180篇
  1992年   120篇
  1991年   70篇
  1990年   62篇
  1989年   61篇
  1988年   45篇
  1987年   32篇
  1986年   29篇
  1985年   37篇
  1984年   25篇
  1983年   19篇
  1982年   19篇
  1981年   9篇
  1980年   15篇
  1979年   9篇
  1978年   7篇
  1977年   22篇
  1976年   2篇
  1954年   6篇
排序方式: 共有10000条查询结果,搜索用时 18 毫秒
101.
A coupled ocean-ice-wave model is used to study ice-edge jet and eddy genesis during surface gravity wave dissipation in a frazil-pancake ice zone. With observational data from the Beaufort Sea, possible wave dissipation processes are evaluated using sensitivity experiments. As wave energy dissipated, energy was transferred into ice floe through radiation stress. Later, energy was in turn transferred into current through ocean-ice interfacial stress. Since most of the wave energy is dissipated at the ice edge, ice-edge jets, which contained strong horizontal shear, appeared both in the ice zone and the ocean. Meanwhile, the wave propagation direction determines the velocity partition in the along-ice-edge and cross-ice-edge directions, which in turn determines the strength of the along-ice-edge jet and cross-ice-edge velocity. The momentum applied in the along-ice-edge(cross-ice-edge)direction increased(decreased) with larger incident angle, which is favorable condition for producing stronger mesoscale eddies, vice versa. The dissipation rate increases(decreases) with larger(smaller) wavenumber, which enhances(reduces) the jet strength and the strength of the mesoscale eddy. The strong along-ice-edge jet may extend to a deep layer(> 200 m). If the water depth is too shallow(e.g., 80 m), the jet may be largely dampened by bottom drag, and no visible mesoscale eddies are found. The results suggest that the bathymetry and incident wavenumber(magnitude and propagation direction) are important for wave-driven current and mesoscale eddy genesis.  相似文献   
102.
南海北部具有丰富的温度锋面和中尺度涡,它们调节着局地的热量和能量平衡。本文利用卫星海洋高度异常和海表温度数据,并基于自动探测方法,探究了2007年至2017年南海北部中尺度涡边缘的海表温度锋面(涡致锋面)特征。反气旋/气旋边缘出现锋面的概率可达20%。气旋涡在各个方向上出现锋面的概率比较均匀,反气旋涡的东北部和西南部出现锋面的概率大于西北部和东南部。中尺度涡致锋面的数量有明显的季节变化,而涡动能未表现出明显的季节变化。中尺度涡致锋区的总涡动能是中尺度涡内动能的3倍,并且反气旋涡致锋面的总涡动能明显强于气旋涡致锋面的总涡动能。中尺度涡致锋面的数量和涡动能的年际变化与厄尔尼诺南方涛动指数没有明显的相关性。本研究也讨论了中尺度涡致锋面的可能机制,但是中尺度涡对海表温度锋的贡献需要进一步定量研究。  相似文献   
103.
为了寻求性能良好、环保吸附剂,用于去除养殖水体中重金属Cu~(2+),作者利用蒙脱石负载羧乙基壳聚糖制备成复合吸附剂,并利用IR、SEM、XRD等手段分析其表面性能,将其用于处理Cu~(2+)溶液,考察了环境因子对其吸附性能的影响,并从吸附动力学和吸附热力学角度分析吸附剂对Cu~(2+)的吸附机理,最后考察其再生利用效果。结果表明:羧乙基壳聚糖成功进入到蒙脱石层间;在羧乙基壳聚糖与蒙脱石质量比为1︰25、40℃恒温水浴搅拌60min、pH=6.0、最佳投加量为4.0g/L、处理浓度不超过30 mg/L Cu~(2+)溶液时,复合吸附剂对Cu~(2+)去除率可以达到96.23%,将其用于淡水养殖鱼塘水体中, Cu~(2+)去除后可达到《渔业水质标准》规定;吸附剂对Cu~(2+)吸附热力学实验结果表明,符合Langmuir模型,反应过程为自发、吸热反应;吸附动力学结果表明该吸附符合准二级动力学方程,反应属于化学吸附;再生实验中NaOH的再生效果优于HCl。  相似文献   
104.
基于1993—2017年从卫星高度计资料中识别出来的中尺度涡轨迹数据集,对冬、夏季孟加拉湾涡旋的源地和性质进行了研究。研究表明孟加拉湾西部、安达曼海和孟加拉湾通往赤道的出口处的中尺度涡旋活动呈现显著的季节性差异。安达曼海在冬、夏季从北往南中尺度涡旋分别以“反气旋涡-气旋涡-反气旋涡”和“气旋涡-反气旋涡-气旋涡”的格局分布。不同源区涡旋的季节性生长过程有明显差异。孟加拉湾西部的涡旋在夏季生长迅速但消散缓慢,斯里兰卡冷涡生长缓慢但消散迅速。不同源区涡旋半径和振幅大小有不同的特征。孟加拉湾西部,无论冬、夏季,反气旋涡的振幅、半径都比气旋涡大;夏季季风漂流区,气旋涡半径比反气旋涡小但是振幅比反气旋涡大;安达曼海内无论冬、夏季都是最北侧聚集区涡旋的半径和振幅最大。孟加拉湾内生命史为30~40 d的涡旋数量最多,生命史在100 d以上的涡旋主要分布在孟加拉湾西部。  相似文献   
105.
University faculty partners from the Departments of Geography and Instruction and Teacher Education at a large, public university collaborated with K-12 teachers and the leadership of a rural school district in order to investigate the crosscutting content of science, mathematics, and geography through the integration of web-based GIS technologies. The project explored the critical connections among technology, pedagogy, and content with a particular emphasis on developing technology-enhanced, inquiry-based lessons in which the teachers and their students used GIS technologies to analyze, visualize, and present data in real-world contexts. The findings highlight the importance of well-structured professional development that builds community, integrates diverse content and pedagogical expertise, provides feedback and coaching, and is of sufficient duration to effect change.  相似文献   
106.
Cropland fallows are the next best-bet for intensification and extensification, leading to increased food production and adding to the nutritional basket. The agronomical suitability of these lands can decide the extent of usage of these lands. Myanmar’s agricultural land (over 13.8 Mha) has the potential to expand by another 50% into additional fallow areas. These areas may be used to grow short-duration pulses, which are economically important and nutritionally rich, and constitute the diets of millions of people as well as provide an important source of livestock feed throughout Asia. Intensifying rice fallows will not only improve the productivity of the land but also increase the income of the smallholder farmers. The enhanced cultivation of pulses will help improve nutritional security in Myanmar and also help conserve natural resources and reduce environmental degradation. The objectives of this study was to use remote sensing methods to identify croplands in Myanmar and cropland fallow areas in two important agro-ecological regions, delta and coastal region and the dry zone. The study used moderate-resolution imaging spectroradiometer (MODIS) 250-m, 16-day normalized difference vegetation index (NDVI) maximum value composite (MVC), and land surface water index (LSWI) for one 1 year (1 June 2012–31 May 2013) along with seasonal field-plot level information and spectral matching techniques to derive croplands versus cropland fallows for each of the three seasons: the monsoon period between June and October; winter period between November and February; and summer period between March and May. The study showed that Myanmar had total net cropland area (TNCA) of 13.8 Mha. Cropland fallows during the monsoon season account for a meagre 2.4% of TNCA. However, in the winter season, 56.5% of TNCA (or 7.8 Mha) were classified as cropland fallows and during the summer season, 82.7% of TNCA (11.4 Mha) were cropland fallows. The producer’s accuracy of the cropland fallow class varied between 92 and 98% (errors of omission of 2 to 8%) and user’s accuracy varied between 82 and 92% (errors of commission of 8 to 18%) for winter and summer, respectively. Overall, the study estimated 19.2 Mha cropland fallows from the two major seasons (winter and summer). Out of this, 10.08 Mha has sufficient moisture (either from rainfall or stored soil water content) to grow short-season pulse crops. This potential with an estimated income of US$ 300 per hectare, if exploited sustainably, is estimated to bring an additional net income of about US$ 1.5 billion to Myanmar per year if at least half (5.04 Mha) of the total cropland fallows (10.08 Mha) is covered with short season pulses.  相似文献   
107.
随着毫米波天文学和空间通信的重要性日益提高, 对天线性能提出了越来越高的要求, 而天线性能往往受到其反射器表面精度的限制. 微波全息技术是一种快速有效的检测反射面天线表面轮廓的测量技术. 通过微波全息测量得到天线口径场, 计算天马65m射电望远镜反射面与理想抛物面的偏差. 天马65m射电望远镜的主反射面板是放射状的, 有14圈. 面板的每个角都固定在面板下方促动器的螺栓上进行上下移动, 且相邻面板交点处的拐角共用一个促动器. 采用平面拟合的方法可以计算各块面板拐角处的调整值, 但是同一个促动器会得到4个不同的调整量. 通过平面拟合, 同时以天线照明函数为权重的平差计算方法得到相邻面板拐角的一个平差值, 即天马65m射电望远镜1104个促动器的最佳调整值. 通过多次调整和新算法的应用, 天马65m射电望远镜反射面的面形精度逐渐提高到了0.24mm.  相似文献   
108.
Xubin ZHANG 《大气科学进展》2022,39(11):1833-1858
To improve the ensemble prediction system of the tropical regional atmosphere model for the South China Sea (TREPS) in predicting landfalling tropical cyclones (TCs), the impacts of three new implementing strategies for surface and model physics perturbations in TREPS were evaluated for 19 TCs making landfall in China during 2014–16. For sea surface temperature (SST) perturbations, spatially uncorrelated random perturbations were replaced with spatially correlated ones. The multiplier f, which is used to form perturbed tendency in the Stochastically Perturbed Parameterization Tendency (SPPT) scheme, was inflated in regions with evident convective activity (f-inflated SPPT). Lastly, the Stochastically Perturbed Parameterization (SPP) scheme with 14 perturbed parameters selected from the planetary boundary layer, surface layer, microphysics, and cumulus convection parameterizations was added. Overall, all these methods improved forecasts more significantly for non-intensifying than intensifying TCs. Compared with f-inflated SPPT, the spatially correlated SST perturbations generally showed comparable performance but were more (less) skillful for intensifying (non-intensifying) TCs. The advantages of the spatially correlated SST perturbations and f-inflated SPPT were mainly present in the deterministic guidance for both TC track and wind and in the probabilistic guidance for reliability of wind. For intensifying TCs, adding SPP led to mixed impacts with significant improvements in probability-matched mean of modest winds and in probabilistic forecasts of rainfall; while for non-intensifying TCs, adding SPP frequently led to positive impacts on the deterministic guidance for track, intensity, strong winds, and moderate rainfall and on the probabilistic guidance for wind and discrimination of rainfall.  相似文献   
109.
The lack of in situ observations and the uncertainties of the drag coefficient at high wind speeds result in limited understanding of heat flux through the air-sea interface and thus inaccurate estimation of typhoon intensity in numerical models. In this study, buoy observations and numerical simulations from an air-sea coupled model are used to assess the surface heat flux changes and impacts of the drag coefficient parameterization schemes on its simulations during the passage of Typhoon Kalmaegi (2014). Three drag coefficient schemes, which make the drag coefficient increase, level off, and decrease, respectively, are considered. The air-sea coupled model captured both trajectory and intensity changes better than the atmosphere-only model, though with relatively weaker sea surface cooling (SSC) compared to that captured by buoy observations, which led to relatively higher heat flux and thus a stronger typhoon. Different from previous studies, for a moderate typhoon, the coupled simulation with the increasing drag coefficient scheme outputted an intensity most consistent with the observation because of the strongest SSC, reasonable ratio of latent and sensible heat exchange coefficients, and an obvious reduction in the overestimated surface heat flux among all experiments. Results from sensitivity experiments showed that surface heat flux was significantly determined by the drag coefficient-induced SSC rather than the resulting wind speed changes. Only when SSC differs indistinctively (<0.4°C) between the coupled simulations, heat flux showed a weak positive correlation with the drag coefficient-impacted 10-m wind speed. The drag coefficient also played an important role in decreasing heat flux even a long time after the passage of Kalmaegi because of the continuous upwelling from deeper ocean layers driven by the impacted momentum flux through the air-sea interface.  相似文献   
110.
The seasonal and diurnal variations of cloud systems are profoundly affected by the large-scale and local environments. In this study, a one-year-long simulation was conducted using a two-dimensional cloud-resolving model over the Eastern Tibetan Plateau (ETP) and two subregions of Eastern China: Southern East China and Central East China. Deep convective clouds (DCCs) rarely occur in the cold season over ETP, whereas DCCs appear in Eastern China throughout the year, and the ETP DCCs are approximately 20%?30% shallower than those over Eastern China. Most strong rainfall events (precipitation intensity, PI> 2.5 mm h?1) in Eastern China are related to warm-season DCCs with ice cloud processes. Because of the high elevation of the ETP, the warm-season freezing level is lower than in Eastern China, providing favorable conditions for ice cloud processes. DCCs are responsible for the diurnal variations of warm-season rainfall in all three regions. Warm-season DCCs over the ETP have the greatest total cloud water content and frequency in the afternoon, resulting in an afternoon rainfall peak. In addition, rainfall events in the ETP also exhibit a nocturnal peak in spring, summer, and autumn due to DCCs. Strong surface heat fluxes around noon can trigger or promote DCCs in spring, summer, and autumn over the ETP but produce only cumulus clouds in winter due to the cold and dry environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号